Do network layer and application layer DDoS attacks differ?

Network layer and application layer DDoS attacks are significant threats. Learn about the differences between them and what you can do to reduce their effects.

A distributed denial of service, or DDoS, attack is a method to bring down a service by sending a flood of legitimate or illegitimate requests from multiple source devices. The goal is to overwhelm the target device so that it can no longer operate normally. Let’s examine two: network layer and application layer DDoS attacks.

Network DDoS attacks attempt to overwhelm the target by overtaxing available bandwidth. Network DDoS protections formerly were implemented at the network edge — typically, using next-gen firewalls and intrusion prevention systems. But, even with DDoS protections in place, a large-scale bot network can quickly overwhelm the edge.

Today, it’s more common for enterprises to tap into the resources of a cloud security service engineered with a high-capacity network expansive enough to handle massive amounts of data in the event a DDoS attack occurs. Because the service can handle the bandwidth capacity without the threat of its resources succumbing to overutilization, it can successfully identify and scrub DDoS traffic while passing on legitimate traffic to your servers. This architecture moves the threat of a bottleneck closer to the source of the attack where it can be better handled without interruption.

How application layer attacks work

Application layer DDoS attacks, on the other hand, don’t target network bandwidth. Instead, they strike the application (Layer 7 of the OSI model) running the service end users are trying to access. To that end, the server, server application and back-end resources are the main target. The goal of these attacks is to consume the resources of a specific service, thus slowing it or stopping it altogether.

Application layer DDoS attacks are trickier to identify and mitigate compared to a network layer DDoS attack. Common methods include the use of CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) tests to validate bots from humans. Additionally, the use of a web application firewall (WAF) is a great way to protect against more sophisticated application DDoS attacks. The purpose of a WAF is to use various signatures to discern between normal human requests and those sent from bots. A WAF can be deployed either on premises or through a third-party cloud security service provider.

Source: https://searchsecurity.techtarget.com/answer/Do-network-layer-and-application-layer-DDoS-attacks-differ

A new type of DDoS attack can amplify attack strength by more than 15,300%

By abusing a little-known multicast protocol, attackers can launch DDoS attacks of immense power, but there may be an easy fix.

Content delivery provider Akamai reports that a new method of launching distributed denial of service (DDoS) attacks ranks as one of the most dangerous of all time.

This new method has already been seen in the wild, which is how Akamai gained an additional level of insight: A gaming industry Akamai client was recently hit with this new kind of attack.

The biggest concern that comes with this new attack is its ability to eat up immense amounts of bandwidth. The client Akamai mentioned saw peaks as high as 35 GB/s during their recent attack.

There’s a key multicast protocol that makes this new kind of DDoS possible: WS-Discovery (WSD).

WSD isn’t a well known protocol, but it is a widely used one, and can be found in thousands of internet-connected devices. WSD is a discovery protocol designed to make IoT devices communicate with a standard language, but it has a problem: It can be spoofed.

TechRepublic sister site ZDNet reported on WSD DDoS attacks at the end of August, giving a concise description of why this attack is so serious: “An attacker can send a UDP packet to a device’s WS-Discovery service with a forged return IP address. When the device sends back a reply, it will send it to the forged IP address, allowing attackers to bounce traffic on WS-Discovery devices, and aim it at the desired target of their DDoS attacks.”

The danger from WS-Discovery

ZDNet continued that WSD attacks aren’t common because of the obscurity of the protocol used to launch it, but this is changing. There has been an uptick in WSD attacks recently and with news about the protocol becoming public it’s likely the risk will only grow.

Akamai notes that WSD was never meant to be an internet-facing technology. Instead, it was meant for use on local area networks so devices could discover each other. Instead, Akamai said, manufacturers of internet-connected devices pushed them out with a misused protocol on them.

ZDNet said that more than 630,000 devices vulnerable to WSD attacks are discoverable on the internet, which give potential attackers a lot of amplification points.

How to stop a WS-Discovery attack

This attack is serious, but if Akamai is correct mitigating it may be simple. That said, if you think devices on your network are vulnerable be sure to follow these instructions: Eliminating attack vectors is only possible if everyone takes the right steps.

Here’s how simple the first part is: Just block UDP source port 3702.

That only covers your servers, though: There will still be traffic slamming your routers, which means you need to put an access control list (ACL) to your routers.

If you have a Cisco-style ACL:

ipv4 access-list [ACCESS-LIST NAME] 1 deny udp any eq 3702 host [TARGET IP] 
ipv4 access-list [ACCESS-LIST NAME] 2 deny udp any host [TARGET IP] fragments 

If you have a Linux iptables APL:

iptables -A INPUT -i [interface] -p udp -m udp —sport 3702 -j DROP 

Akamai paints a grim picture of the future of WSD attacks: “The only thing we can do now is wait for devices that are meant to have a 10 to 15-year life to die out, and hope that they are replaced with more secured version.”

That doesn’t mean you can’t do anything: Take the proper precautions by blocking ports, adding ACLs, and installing critical updates that could mitigate future risks.

Source: https://www.techrepublic.com/article/a-new-type-of-ddos-attack-can-amplify-attack-strength-by-more-than-15300/

Discord was down due to Cloudflare outage affecting parts of the web

Popular chat service Discord experienced issues today due to network problems at Cloudflare and a wider internet issue. The app was inaccessible for its millions of users, and even Discord’s website and status pages were struggling. Discord’s problems could be traced to an outage at Cloudflare, a content delivery network. Cloudflare started experiencing issues at 7:43AM ET, and this caused Discord, Feedly, Crunchyroll, and many other sites that rely on its services to have partial outages.

Cloudflare says it’s working on a “possible route leak” affecting some of its network, but services like Discord have been inaccessible for nearly 45 minutes now. “Discord is affected by the general internet outage,” says a Discord statement on the company’s status site. “Hang tight. Pet your cats.”

“This leak is impacting many internet services including Cloudflare,” says a Cloudflare spokesperson. “We are continuing to work with the network provider that created this route leak to remove it.” Cloudflare doesn’t name the network involved, but Verizon is also experiencing widespread issues across the East Coast of the US this morning. Cloudflare notes that “the network responsible for the route leak has now fixed the issue,” so services should start to return to normal shortly.

Cloudfare explained the outage in an additional statement, commenting that “Earlier today, a widespread BGP routing leak affected a number of Internet services and a portion of traffic to Cloudflare. All of Cloudflare’s systems continued to run normally, but traffic wasn’t getting to us for a portion of our domains. At this point, the network outage has been fixed and traffic levels are returning to normal.”

Source: https://www.theverge.com/2019/6/24/18715308/discord-down-outage-cloudflare-problems-crunchyroll-feedly

DDoS Attacks Up in Q1 After Months of Steady Decline

Sudden surge suggests that new actors have stepped up to the plate to replace the old operators.

Distributed denial-of-service attacks (DDoS) — particularly those lasting more than an hour — increased sharply in number during the first quarter of this year over the prior quarter after declining steadily for most of 2018.

The unexpected resurgence suggests that new suppliers of DDoS services have quietly emerged to replace operators that were disrupted in a series of law enforcement actions last year, Kaspersky Lab said in a report summarizing DDoS activity in Q1 2019.

The security vendor’s analysis shows the number of DDoS attacks in Q1 to be some 84% higher than the number recorded in the last three months of 2018.

One significant trend that Kaspersky Lab notes is an overall increase in the number of attacks lasting one hour or longer. Over one in 10 (10.13%) of the DDoS attacks in Kaspersky Lab’s dataset lasted between five hours and nine hours, and another 9.37% lasted between 10 hours and 49 hours — or more than two days. Some 2% of the attacks were longer than 50 hours, with the longest one lasting 289 hours, or just over 12 days.

In total, the proportion of sustained attacks, or those lasting more than an hour, nearly doubled from 11% of the overall number of DDoS attacks in the last quarter of 2018 to 21% of the total in the first three months this year. Correspondingly, the number of short-duration DDoS attacks lasting less than four hours declined — from 83.34% in Q4 2018 to 78.66% this year.

Alexander Gutnikov, an analyst with Kaspersky Lab DDoS prevention service, says attackers are increasingly moving away from volumetric, high-bandwidth attacks at the network (L3) and transport (L4) layers because of the mitigations available for such attacks. Instead, they are turning to smarter DDoS attacks such as those that target the application layer.

“The main driver of the growth of smart DDoS attacks is a decrease in the effectiveness of volumetric attacks,” Gutnikov says. “Volumetric attacks have to be very powerful to significantly affect the stability of resources,” For vendors that provide dedicated DDoS mitigation services, the trend is not particularly new. he adds.

As has been the case for several years, a majority of DDoS attacks last quarter were SYN flood attacks. However, the number of SYN attacks as a percentage of the overall total of DDoS attacks jumped sharply from 58.1% in the last quarter of 2018 to over 84% in this year’s first quarter. Meanwhile, other types of DDoS attacks, such as UDP flooding and TCP flooding, showed a corresponding decrease.

HTTP flooding attacks targeting the Web application layer are still relatively rare. However, the number of such attacks appears to be growing. Kaspersky Lab analysis shows HTTP flood attacks increasing in number from 2.2% of the overall total in Q4 to 3.3% last quarter. “In terms of the ratio of effectiveness and cost of organization, application-level attacks, L7, are an optimal option for malefactors,” Gutnikov notes.

A Persistent Threat
Kaspersky Lab’s new report is the latest to highlight the continuing threat that DDoS attacks present to organizations despite some major wins for law enforcement against those behind such attacks.

Last April, for instance, European law enforcement agencies, in cooperation with their counterparts in other regions of the world, dismantled Webstresser, one of the largest sites for buying and selling DDoS services at the time, and announced the arrests of the operators and several clients of the illegal outfit.

More recently the US Justice Department announced it had seized 15 websites offering similar DDoS-for-hire services and charged three individuals for their roles in the operation. In January, a Boston federal judge sentencedan individual convicted on charges of launching a DDoS attack on Boston Children’s Hospital to 10 years in prison.

The fact that the number of attacks increased last quarter are all the same suggests that new actors have stepped up to the plate to replace the old operators, according to Kaspersky Lab.

“We believe that the motives for DDoS services remain the same: politics, unfair competition, concealment of other cybercrime, or personal motives,” Gutnikov says. “And for people who conduct DDoS attacks, the main motive is money.”

Data from Verizon’s “2019 Data Breach Investigations Report” (DBIR) shows that public-sector organizations and those in the IT, finance, and professional services sectors are far more frequent targets of DDoS attacks than organizations in other industries. Verizon counted more than 990 DDoS incidents against public-sector organizations in 2018, 684 attacks against IT organizations, 575 targeting financial firms, and nearly 410 against professional services firms.

Financial services organizations and IT companies are also targets of some of the biggest DDoS attacks — from a bandwidth and packets-per-second standpoint. Verizon’s data shows that in 2018, the median size of DDoS attacks against financial services companies and IT organizations were 1.47 Gbps and 1.27 Gbps, respectively.

“Over time, DDoS attacks have been getting much more tightly clumped with regard to size,” with little difference in size between the largest and smallest attacks, Verizon said.

Ominously for enterprise organizations, while DDoS attacks, on average, have shrunk in size overall, there has been an increase in the number of really massive attacks.

According to security vendor Imperva, there has been a recent increase in DDoS attacks involving 500 million or more attack packets per second. During a one-week period earlier this year, Imperva’s researchers detected nine such DDoS attacks, with the largest one hitting an astounding 652 million packets per second.

Source:https://www.darkreading.com/attacks-breaches/ddos-attacks-up-in-q1-after-months-of-steady-decline/d/d-id/1334778

DIY Botnet Detection: Techniques and Challenges

Botnets continue to spread to places never dreamed of a few years ago. But you can fight them off, and these tips can help.

Botnets have been around for over two decades, and with the rise of the Internet of Things (IoT), they have spread further to devices no one imagined they would: routers, mobile devices, and even toasters.

Some botnets are legions of bot-soldiers waiting for a command to attack a target server, generally to overwhelm the server with a distributed denial-of-service (DDoS) attack. Other botnets target specific devices by stealing passwords or mining cryptocurrency. Cryptocurrency mining, in particular, has been a dramatically growing threat for organizations recently, with botnets such as Coinhive and CryptoLoot enabling cybercriminals to make as much as $100 million a year at the expense of victims’ computing power. Smominru, among the largest cryptocurrency-mining botnets, has infected over half a million machines using the infamous EternalBlue exploit leaked from the NSA.

To prevent botnet infections, organizations must be able to detect them. But botnet detection isn’t easy. Let’s explore some of the top techniques and challenges in botnet detection.

Methods for Botnet Detection
So, what’s a botnet? Simply put, it’s a cluster of bots — compromised computers and devices — that perform commands given by the botnet owner. Usually, the botnet owner will dedicate a command and control server (C2), a compromised server for communicating with the bots, usually via Internet Relay Chat commands. The botnet owner uses the C2 server to order botnets to execute attacks, whether that’s DDoS attacks, data theft, identity theft, or another type of attack. Thus, the smoking gun that points to a botnet is its C2 server.

Unfortunately, finding the C2 isn’t usually a simple task. Many botnet commands emerge from multiple servers or take hidden forms, masking the malicious commands as harmless activity such as Tor network traffic, social media traffic, traffic between peer-to-peer services, or domain-generation algorithms. Further complicating matters, the commands are often very subtle, making it difficult to detect any anomalies.

One method for attempting to detect C2s is breaking down and analyzing the malware code. Organizations can try to disassemble the compiled code, from which they can sometimes identify the root source of the botnet’s commands. However, since botnet creators and administrators increasingly are using integrated encryption, this technique is less and less effective.

Generally, C2 detection requires visibility into the communication between a C2 server and its bots, but only security solutions that specifically protect C2 servers will have this kind of visibility. A more common approach for detecting botnets is tracking and analyzing the attacks themselves — into which standard security solutions provide visibility — and determining which attacks originated from botnets.

When looking at exploit attempts, there are a few possible indications for a botnet. For example, if the same IP addresses attack the same sites, at the same time, using the same payloads and attack patterns, there’s a good chance they’re part of a botnet. This is especially true if many IPs and sites are involved. One prominent example is a DDoS attempt by a botnet on a web service.

Source: Johnathan Azaria
Source: Johnathan Azaria

False Positives
The likelihood of false positives makes botnet detection particularly difficult. Some payloads are widely used, raising the probability of a randomly occurring pattern triggering a false positive. Additionally, attackers can change their IP addresses by using a virtual private network or a proxy, making it look like many attackers or bots are involved when there’s really only one.

Hacking tools and vulnerability scanners also behave similarly enough to botnets to often return false positives. This is because hacking tools generate the same payloads and attack patterns, and many hackers use them, regardless of the color of their hat. And, if different players happen to conduct a penetration test on the same sites at the same time, it may look like a botnet attack.

Organizations can often identify false positives by Googling the payload and referencing any documented information around it. Another technique involves simply gleaning any information readily available within the raw request in the security solution. For example, if a vulnerability scanner is to blame, most security solutions will reveal that by identifying it, especially if it’s one of the more common vulnerability scanners.

False positives are an unavoidable challenge in botnet detection given the enormous amount of potential incidents; recent research shows that 27% of IT professionals receive over 1 million security alerts every day, while 55% receive more than 10,000. But with the right techniques and diligence, organizations can discern the harmless traffic from the malicious, botnet-driven traffic.

Source: https://www.darkreading.com/cloud/diy-botnet-detection-techniques-and-challenges/a/d-id/1333949

FragmentSmack: How is this denial-of-service exploited?

FragmentSmack, a DDoS vulnerability first discovered in Linux, affects Windows as well as nearly 90 Cisco products. Discover how it can be exploited with Judith Myerson.

A distributed denial-of-service vulnerability called FragmentSmack enables an unauthenticated remote attacker to disable servers with a stream of fragmented IP packets that activate the vulnerability on affected systems. First discovered in Linux, and now also found in Windows, FragmentSmack affects many products, including nearly 90 from Cisco. How can this vulnerability be exploited, and how big is the threat?
FragmentSmack is a vulnerability in the IP stack that can be used to execute a distributed denial-of-service attack. The vulnerability affects Linux kernel version 3.9 or later, and it was discovered in some Cisco products by the Vulnerability Coordination team of the National Cyber Security Centre of Finland and the CERT Coordination Center. The flaw is caused by inefficient algorithms used in IP implementations to reassemble fragmented IPv4 and IPv6 packets.

An attacker using the FragmentSmack vulnerability could exploit it remotely by continuously sending crafted packets — that appear to be fragments of larger packets that need to be reassembled — to cause the system to become unresponsive, as 100% of the CPU cores will be in use.

In one scenario, an attacker could send a stream of 8-byte sized IP fragments, each starting with randomly chosen offset values, to a server. The queue of malformed IP fragments waiting for reassembly — which will never happen because the fragments are not part of any legitimate packets — increases in size until all the CPU core resources are consumed, leaving no room for other tasks the system needs to perform.

The attacker doesn’t specify what core the malformed packets are sent to and the Linux kernel automatically distributes the reassembly to different cores. While such an attack could take a server down, once the flow of malicious fragments stops, the targeted server can resume its normal function.

Cisco’s vulnerable listed products include network and content security devices, voice and unified communications devices, and telepresence and transcending devices.

Likewise, this threat has extended to Microsoft and Red Hat, and the affected Microsoft’s Window systems include versions 7, 8.1 and 10, as well as all the Windows Server versions. Windows 10 — 64 bit — in particular, features an option for Windows Subsystem for Linux that is vulnerable. Turning off this option doesn’t prevent the attacker from exploiting the vulnerability, however.

Vulnerable Red Hat products include Virtualization 4, Enterprise MRG, Enterprise Linux Atomic Host and Enterprise Linux versions 6, 7, Real Time 7, 7 for ARM64 and 7 for Power.

Source: https://searchsecurity.techtarget.com/answer/FragmentSmack-How-is-this-denial-of-service-exploited

How to secure your online business from cyber threats?

Ecommerce revenue worldwide amounts to more than 1.7 trillion US dollars, in the year 2018 alone. And the growth is expected to increase furthermore.

However, with growth comes new challenges. One such problem is cybersecurity. In 2017, there were more than 88 million attacks on eCommerce businesses. And a significant portion includes small businesses.

Moreover, online businesses take a lot of days to recover from the attacks. Some businesses completely shut down due to the aftermath of the security breaches.

So, if you are a small business, it is essential to ensure the safety and security of your eCommerce site. Else, the risks pose a potential threat to your online business.

Here we discuss some basics to ensure proper security to your eCommerce site.

Add an SSL certificate

An SSL Certificate ensures that the browser displays a green padlock or in a way shows to the site visitors that they are safe; and that their data is protected with encryption during the transmission.

To enable or enforce an SSL certificate on your site, you should enable HTTPS—secured version of HyperText Transfer Protocol (HTTP)—across your website.

In general, HTTP is the protocol web browsers use to display web pages.

So, HTTPS and SSL certificates work hand in hand. Moreover, one is useless without the other.

However, you have to buy an SSL certificate that suits your needs. Buying a wrong SSL certificate would do no good for you.

Several types of SSL certificates are available based on the functionality, validation type, and features.

Some common SSL certificates based on the type of verification required are:

  1. Domain Validation SSL Certificate: This SSL certificate is issued after validating the ownership of the domain name.
  2. Organization Validation SSL Certificate: This SSL certificate additionally requires you to verify your business organization. The added benefit is it gives the site visitors or users some more confidence. Moreover, small online businesses should ideally opt for this type of SSL certificate.
  3. Extended Validation SSL Certificate: Well, this type of SSL certificate requires you to undergo more rigorous checks. But when someone visits your website, the address bar in the browser displays your brand name. It indicates users that you’re thoroughly vetted and highly trustworthy.

Here are some SSL certificate types based on the features and functionality.

  1. Single Domain SSL Certificate: This SSL certificate can be used with one and only one domain name.
  2. Wildcard SSL Certificate: This SSL certificate covers the primary and all the associated subdomains.
    Every subdomain along with the primary domain example.com will be covered under a single wildcard SSL certificate.
  3. Multi-Domain SSL Certificate: One single SSL certificate can cover multiple primary domains. The maximum number of domains covered depends on the SSL certificate vendor your purchase the certificate from. Typically, a Multi-Domain SSL Certificate can support up to 200 domain names.

Nowadays, making your business site secure with SSL certificate is a must. Otherwise, Google will punish you. Yes, Google ranks sites with HTTPS better than sites using no security.

However, if you are processing online payments on your site, then SSL security is essential. Otherwise, bad actors will misuse your customer information such as credit card details, eventually leading to identity theft and fraudulent activities.

Use a firewall

In general, a firewall monitors incoming and outgoing traffic on your servers, and it helps you to block certain types of traffic—which may pose a threat—from interacting or compromising your website servers.

Firewalls are available in both virtual and physical variants. And it depends on the type of environment you have in order to go with a specific firewall type.

Many eCommerce sites use something called a Web Application Firewall (WAF).

On top of a typical network firewall, a WAF gives more security to a business site. And it can safeguard your website from various types of known security attacks.

So, putting up a basic firewall is essential. Moreover, using a Web Application Firewall (WAF) is really up to the complexity of the website or application you have put up.

Protect your site from DDoS attacks

A type of attack used to bring your site down by sending huge amounts of traffic is nothing but denial-of-service-attack. In this attack, your site will be bombarded with spam requests in a volume that your website can’t handle. And the site eventually goes down, putting a service disruption to the normal/legitimate users.

However, it is easy to identify a denial-of-service-request, because too many requests come from only one source. And by blocking that source using a Firewall, you can defend your business site.

However, hackers have become smart and highly intelligent. They usually compromise various servers or user computers across the globe. And using those compromised sources, hackers will send massive amounts of requests. This type of advanced denial-of-service attack is known as distributed-denial-of-service-attack. Or simply put a DDoS attack.

When your site is attacked using DDoS, a common Firewall is not enough; because a firewall can only defend you from bad or malicious requests. But in DDoS, all requests can be good by the definition of the Firewall, but they overwhelm your website servers.

Some advanced Web Application Firewalls (WAF) can help you mitigate the risks of DDoS attacks.

Also, Internet Service Providers (ISPs) can detect them and stop the attacks from hitting your website servers. So, contact your ISP and get help from them on how they can protect your site from DDoS attacks.

If you need a fast and straightforward way to secure your website from distributed-denial-of-service attacks, services like Cloud Secure from Webscale Networks is a great option.

In the end, it is better to have strategies in place to mitigate DDoS attacks. Otherwise, your business site may go down and can damage your reputation—which is quite crucial in the eCommerce world.

Get malware protection

A Malware is a computer program that can infect your website and can do malicious activities on your servers.

If your site is affected by Malware, there are a number of dangers your site can run into. Or, the user data stored on your servers might get compromised.

So, scanning your website regularly for malware detection is essential. Symantec Corporation provides malware scanning and removal tools. These tools can help your site stay safe from various kinds of malware.

Encrypt data

If you are storing any user or business related data, it is best to store the data in encrypted form, on your servers.

If the data is not encrypted, and when there is a data breach, a hacker can easily use the data—which may include confidential information like credit card details, social security number, etc. But when the data is encrypted, it is much hard to misuse as the hacker needs to gain access to the decryption key.

However, you can use a tokenization system. In which, the sensitive information is replaced with a non-sensitive data called token.

When tokenization implemented, it renders the stolen data useless. Because the hacker cannot access the Tokenization system, which is the only component that can give access to sensitive information. Anyhow, your tokenization system should be implemented and isolated properly.

Use strong passwords

Use strong passwords that are at least 15 character length for your sites’ admin logins. And when you are remotely accessing your servers, use SSH key-based logins wherever possible. SSH key-based logins are proven to be more secure than password-based logins.

Not only you, urge your site users and customers to use strong password combinations. Moreover, remind them to change their password frequently. Plus, notify them about any phishing scams happening on your online business name.

For example, bad actors might send emails to your customers giving lucrative offers. And when a user clicks on the email, he will be redirected to a site that looks like yours, but it is a phishing site. And when payment details are entered, the bad actor takes advantage and commits fraudulent activities with the stolen payment info.

So, it is important to notify your user base about phishing scams and make your customers knowledgeable about cybersecurity.

Avoid public Wi-Fi networks

When you are working on your business site or logging into your servers, avoid public wifi networks. Often, these networks are poorly maintained on the security front. And they can become potential holes for password leaks.

However, public wifi networks can be speedy. So, when you cannot avoid using a public wifi network, use VPN services like ProtonVPN, CyberGhost VPN, TunnelBear VPN, etc, to mitigate the potential risks.

Keep your software update

To run an online business, you have to use various software components, from server OS to application middleware and frameworks.

Ensure that all these components are kept up to date timely and apply the patches as soon as they are available. Often these patches include performance improvements and security updates.

Some business owners might feel that this is a tedious process. But remember, one successful cyber attack has the potential to push you out of business for several days, if not entirely.

Conclusion

In this 21st century, web technology is growing and changing rapidly. So do the hackers from the IT underworld.

The steps mentioned above are necessary. But we cannot guarantee that they are sufficient. Moreover, each business case is different. You always have to keep yourself up to date. And it would help if you took care of your online business security from time to time. Failing which can make your business site a victim of cyber attacks.

Source: https://londonlovesbusiness.com/how-to-secure-your-online-business-from-cyber-threats/

Over third of large Dutch firms hit by cyberattack in 2016 – CBS

Large companies are hit by cyberattacks at an above average rate, according to the Cybersecurity Monitor of Dutch statistics bureau CBS for 2018. Among companies of 250+ employees, 39 percent were hit at least once by a cyberattack in 2016, such as a hack or DDoS attack. By contrast, around 9 percent of small companies (2-10 employees) were confronted with such an ICT incident.

Of the larger companies, 23 percent suffered from failure of business processes due to the outside cyberattacks. This compares to 6 percent for the smaller companies. Of all ICT incidents, failures were most common, for all sizes, though again, the larger companies were more affected (55%) than the smaller ones (21%). The incidents led to costs for both groups of companies.

Chance of incident bigger at large company

CBS noted that ICT incidents can arise from both from an outside attack and from an internal cause, such as incorrectly installed software or hardware or from the unintentional disclosure of data by an employee. The fact that larger companies suffer more from ICT incidents can be related to the fact that more people work with computers; this increases the chance of incidents. In addition, larger companies often have a more complex ICT infrastructure, which can cause more problems.

The number of ICT incidents also varies per industry. For example, small businesses in the ICT sector (12%) and industry (10%) often suffer from ICT incidents due to external attacks. Small companies in the hospitality sector (6%) and health and welfare care (5%) were less often confronted with cyberattacks.

Internal cause more common at smaller companies

Compared to larger companies, ICT incidents at small companies more often have an internal cause: 2 out 3, compared to 2 out of 5 for larger companies. ICT incidents at small companies in health and welfare care most often had an internal cause (84%). In the ICT sector, this share was 60 percent.

About 7 percent of companies with an ICT incident report them to one or more authorities, including police, the Dutch Data Protection Authority AP, a security team or their bank. The largest companies report ICT incidents much more often (41%) than the smallest companies (6%). Large companies report these ICT incidents most frequently to the AP, complying with law. After that, most reports are made to the police. The smallest companies report incidents most often to their bank.

Smaller: less safe

Small businesses are less often confronted with ICT incidents and, in comparison with large companies, take fewer security measures. Around 60 percent of small companies take three or more measures. This goes to 98 percent for larger companies.

Source: https://www.telecompaper.com/news/over-third-39-of-large-dutch-firms-hit-by-cyberattack-in-2016-cbs–1265851

Central planning bureau finds Dutch cybersecurity at high level

Dutch businesses and the public sector are well protected against cybersecurity threats compared to other countries, according to a report from the Central Planning Bureau on the risks for cybersecurity. Dutch websites employ encryption techniques relatively often, and the ISPs take measures to limit the impact of DDoS attacks, the report said.

Small and medium-sized businesses are less active than large companies in protecting their activities, employing techniques such as data encryption less often, the CPB found. This creates risks for small business and consumers that could be avoided.

The report also found that the Dutch are more often victims of cybercrime than other forms of crime. This implies a high cost for society to ensure cybersecurity. In 2016, already 11 percent of businesses incurred costs due to a hacking attempt.

The threat of DDoS attacks will only increase in the coming years due to the growing number of IoT devices. This was already evident in the attacks against Dutch bank websites earlier this year. A further risk is that over half the most important banks in the world use the same DDoS protection service.

According to the paper Financieele Dagblad, this supplier is Akamai. The company provides DDoS protection for 16 of the 30 largest banks worldwide. The Dutch banks ABN Amro, ING and Rabobank said they were not dependent on a single provider.

The CPB report also found that the often reported shortage of qualified ICT staff is less of a threat than thought. The number of ICT students has risen 50 percent in four years and around 100,000 ICT jobs have been added in the country since 2008. Already 5 percent of all jobs are in ICT. This puts the Netherlands at the top of the pack in Europe, alongside the Nordic countries.

Source: https://www.telecompaper.com/news/central-planning-bureau-finds-dutch-cybersecurity-at-high-level–1264818

DDoS Attack on German Energy Company RWE

Protesters in Germany have been camping out at the Hambach Forest, where the German energy company RWE has plans to mine for coal. Meanwhile, it’s been reported that RWE’s website was under attack as police efforts to clear the protesters from the woods were underway.

According to Deutsche Welle, unknown attackers launched a large-scale distributed denial-of-service (DDoS), which took down RWE’s website for virtually all of Tuesday. No other systems were attacked, but efforts to clear away the protesters have been ongoing for the better part of the month, and activists have reportedly made claims that they will be getting more aggressive in their tactics.

Activists have occupied the forest in hopes of preventing RWE from moving forward with plans to expand its coal mining operations, which would effectively clear the forest. In addition to camping out in the forest, the protesters have reportedly taken to YouTube to spread their message.

Reports claim that a clip was posted last week by Anonymous Deutsch that warned, “If you don’t immediately stop the clearing of the Hambach Forest, we will attack your servers and bring down your web pages, causing you economic damage that you will never recover from,” DW reported.

“Together, we will bring RWE to its knees. This is our first and last warning,” the voice from the video reportedly added.

DDoS attacks are intended to cripple websites, and the attack on RWE allowed the activists to make good on their threat, at least for one day.

““This is yet another example that illustrates the DDoS threat to [softer targets in] CNI [critical network infrastructure].  RWE is an operator of an essential service (energy) in Germany. The lights didn’t go out but their public-facing website was offline as a result of this attack,” said Andrew Llyod, president, Corero Network Security.

In a recent DDoS report, Corero researchers found that “after facing one attack, one in five organizations will be targeted again within 24 hours.”

Source: https://www.infosecurity-magazine.com/news/ddos-attack-on-german-energy/