DDoS Attacks Up in Q1 After Months of Steady Decline

Sudden surge suggests that new actors have stepped up to the plate to replace the old operators.

Distributed denial-of-service attacks (DDoS) — particularly those lasting more than an hour — increased sharply in number during the first quarter of this year over the prior quarter after declining steadily for most of 2018.

The unexpected resurgence suggests that new suppliers of DDoS services have quietly emerged to replace operators that were disrupted in a series of law enforcement actions last year, Kaspersky Lab said in a report summarizing DDoS activity in Q1 2019.

The security vendor’s analysis shows the number of DDoS attacks in Q1 to be some 84% higher than the number recorded in the last three months of 2018.

One significant trend that Kaspersky Lab notes is an overall increase in the number of attacks lasting one hour or longer. Over one in 10 (10.13%) of the DDoS attacks in Kaspersky Lab’s dataset lasted between five hours and nine hours, and another 9.37% lasted between 10 hours and 49 hours — or more than two days. Some 2% of the attacks were longer than 50 hours, with the longest one lasting 289 hours, or just over 12 days.

In total, the proportion of sustained attacks, or those lasting more than an hour, nearly doubled from 11% of the overall number of DDoS attacks in the last quarter of 2018 to 21% of the total in the first three months this year. Correspondingly, the number of short-duration DDoS attacks lasting less than four hours declined — from 83.34% in Q4 2018 to 78.66% this year.

Alexander Gutnikov, an analyst with Kaspersky Lab DDoS prevention service, says attackers are increasingly moving away from volumetric, high-bandwidth attacks at the network (L3) and transport (L4) layers because of the mitigations available for such attacks. Instead, they are turning to smarter DDoS attacks such as those that target the application layer.

“The main driver of the growth of smart DDoS attacks is a decrease in the effectiveness of volumetric attacks,” Gutnikov says. “Volumetric attacks have to be very powerful to significantly affect the stability of resources,” For vendors that provide dedicated DDoS mitigation services, the trend is not particularly new. he adds.

As has been the case for several years, a majority of DDoS attacks last quarter were SYN flood attacks. However, the number of SYN attacks as a percentage of the overall total of DDoS attacks jumped sharply from 58.1% in the last quarter of 2018 to over 84% in this year’s first quarter. Meanwhile, other types of DDoS attacks, such as UDP flooding and TCP flooding, showed a corresponding decrease.

HTTP flooding attacks targeting the Web application layer are still relatively rare. However, the number of such attacks appears to be growing. Kaspersky Lab analysis shows HTTP flood attacks increasing in number from 2.2% of the overall total in Q4 to 3.3% last quarter. “In terms of the ratio of effectiveness and cost of organization, application-level attacks, L7, are an optimal option for malefactors,” Gutnikov notes.

A Persistent Threat
Kaspersky Lab’s new report is the latest to highlight the continuing threat that DDoS attacks present to organizations despite some major wins for law enforcement against those behind such attacks.

Last April, for instance, European law enforcement agencies, in cooperation with their counterparts in other regions of the world, dismantled Webstresser, one of the largest sites for buying and selling DDoS services at the time, and announced the arrests of the operators and several clients of the illegal outfit.

More recently the US Justice Department announced it had seized 15 websites offering similar DDoS-for-hire services and charged three individuals for their roles in the operation. In January, a Boston federal judge sentencedan individual convicted on charges of launching a DDoS attack on Boston Children’s Hospital to 10 years in prison.

The fact that the number of attacks increased last quarter are all the same suggests that new actors have stepped up to the plate to replace the old operators, according to Kaspersky Lab.

“We believe that the motives for DDoS services remain the same: politics, unfair competition, concealment of other cybercrime, or personal motives,” Gutnikov says. “And for people who conduct DDoS attacks, the main motive is money.”

Data from Verizon’s “2019 Data Breach Investigations Report” (DBIR) shows that public-sector organizations and those in the IT, finance, and professional services sectors are far more frequent targets of DDoS attacks than organizations in other industries. Verizon counted more than 990 DDoS incidents against public-sector organizations in 2018, 684 attacks against IT organizations, 575 targeting financial firms, and nearly 410 against professional services firms.

Financial services organizations and IT companies are also targets of some of the biggest DDoS attacks — from a bandwidth and packets-per-second standpoint. Verizon’s data shows that in 2018, the median size of DDoS attacks against financial services companies and IT organizations were 1.47 Gbps and 1.27 Gbps, respectively.

“Over time, DDoS attacks have been getting much more tightly clumped with regard to size,” with little difference in size between the largest and smallest attacks, Verizon said.

Ominously for enterprise organizations, while DDoS attacks, on average, have shrunk in size overall, there has been an increase in the number of really massive attacks.

According to security vendor Imperva, there has been a recent increase in DDoS attacks involving 500 million or more attack packets per second. During a one-week period earlier this year, Imperva’s researchers detected nine such DDoS attacks, with the largest one hitting an astounding 652 million packets per second.

Source:https://www.darkreading.com/attacks-breaches/ddos-attacks-up-in-q1-after-months-of-steady-decline/d/d-id/1334778

DIY Botnet Detection: Techniques and Challenges

Botnets continue to spread to places never dreamed of a few years ago. But you can fight them off, and these tips can help.

Botnets have been around for over two decades, and with the rise of the Internet of Things (IoT), they have spread further to devices no one imagined they would: routers, mobile devices, and even toasters.

Some botnets are legions of bot-soldiers waiting for a command to attack a target server, generally to overwhelm the server with a distributed denial-of-service (DDoS) attack. Other botnets target specific devices by stealing passwords or mining cryptocurrency. Cryptocurrency mining, in particular, has been a dramatically growing threat for organizations recently, with botnets such as Coinhive and CryptoLoot enabling cybercriminals to make as much as $100 million a year at the expense of victims’ computing power. Smominru, among the largest cryptocurrency-mining botnets, has infected over half a million machines using the infamous EternalBlue exploit leaked from the NSA.

To prevent botnet infections, organizations must be able to detect them. But botnet detection isn’t easy. Let’s explore some of the top techniques and challenges in botnet detection.

Methods for Botnet Detection
So, what’s a botnet? Simply put, it’s a cluster of bots — compromised computers and devices — that perform commands given by the botnet owner. Usually, the botnet owner will dedicate a command and control server (C2), a compromised server for communicating with the bots, usually via Internet Relay Chat commands. The botnet owner uses the C2 server to order botnets to execute attacks, whether that’s DDoS attacks, data theft, identity theft, or another type of attack. Thus, the smoking gun that points to a botnet is its C2 server.

Unfortunately, finding the C2 isn’t usually a simple task. Many botnet commands emerge from multiple servers or take hidden forms, masking the malicious commands as harmless activity such as Tor network traffic, social media traffic, traffic between peer-to-peer services, or domain-generation algorithms. Further complicating matters, the commands are often very subtle, making it difficult to detect any anomalies.

One method for attempting to detect C2s is breaking down and analyzing the malware code. Organizations can try to disassemble the compiled code, from which they can sometimes identify the root source of the botnet’s commands. However, since botnet creators and administrators increasingly are using integrated encryption, this technique is less and less effective.

Generally, C2 detection requires visibility into the communication between a C2 server and its bots, but only security solutions that specifically protect C2 servers will have this kind of visibility. A more common approach for detecting botnets is tracking and analyzing the attacks themselves — into which standard security solutions provide visibility — and determining which attacks originated from botnets.

When looking at exploit attempts, there are a few possible indications for a botnet. For example, if the same IP addresses attack the same sites, at the same time, using the same payloads and attack patterns, there’s a good chance they’re part of a botnet. This is especially true if many IPs and sites are involved. One prominent example is a DDoS attempt by a botnet on a web service.

Source: Johnathan Azaria
Source: Johnathan Azaria

False Positives
The likelihood of false positives makes botnet detection particularly difficult. Some payloads are widely used, raising the probability of a randomly occurring pattern triggering a false positive. Additionally, attackers can change their IP addresses by using a virtual private network or a proxy, making it look like many attackers or bots are involved when there’s really only one.

Hacking tools and vulnerability scanners also behave similarly enough to botnets to often return false positives. This is because hacking tools generate the same payloads and attack patterns, and many hackers use them, regardless of the color of their hat. And, if different players happen to conduct a penetration test on the same sites at the same time, it may look like a botnet attack.

Organizations can often identify false positives by Googling the payload and referencing any documented information around it. Another technique involves simply gleaning any information readily available within the raw request in the security solution. For example, if a vulnerability scanner is to blame, most security solutions will reveal that by identifying it, especially if it’s one of the more common vulnerability scanners.

False positives are an unavoidable challenge in botnet detection given the enormous amount of potential incidents; recent research shows that 27% of IT professionals receive over 1 million security alerts every day, while 55% receive more than 10,000. But with the right techniques and diligence, organizations can discern the harmless traffic from the malicious, botnet-driven traffic.

Source: https://www.darkreading.com/cloud/diy-botnet-detection-techniques-and-challenges/a/d-id/1333949

FragmentSmack: How is this denial-of-service exploited?

FragmentSmack, a DDoS vulnerability first discovered in Linux, affects Windows as well as nearly 90 Cisco products. Discover how it can be exploited with Judith Myerson.

A distributed denial-of-service vulnerability called FragmentSmack enables an unauthenticated remote attacker to disable servers with a stream of fragmented IP packets that activate the vulnerability on affected systems. First discovered in Linux, and now also found in Windows, FragmentSmack affects many products, including nearly 90 from Cisco. How can this vulnerability be exploited, and how big is the threat?
FragmentSmack is a vulnerability in the IP stack that can be used to execute a distributed denial-of-service attack. The vulnerability affects Linux kernel version 3.9 or later, and it was discovered in some Cisco products by the Vulnerability Coordination team of the National Cyber Security Centre of Finland and the CERT Coordination Center. The flaw is caused by inefficient algorithms used in IP implementations to reassemble fragmented IPv4 and IPv6 packets.

An attacker using the FragmentSmack vulnerability could exploit it remotely by continuously sending crafted packets — that appear to be fragments of larger packets that need to be reassembled — to cause the system to become unresponsive, as 100% of the CPU cores will be in use.

In one scenario, an attacker could send a stream of 8-byte sized IP fragments, each starting with randomly chosen offset values, to a server. The queue of malformed IP fragments waiting for reassembly — which will never happen because the fragments are not part of any legitimate packets — increases in size until all the CPU core resources are consumed, leaving no room for other tasks the system needs to perform.

The attacker doesn’t specify what core the malformed packets are sent to and the Linux kernel automatically distributes the reassembly to different cores. While such an attack could take a server down, once the flow of malicious fragments stops, the targeted server can resume its normal function.

Cisco’s vulnerable listed products include network and content security devices, voice and unified communications devices, and telepresence and transcending devices.

Likewise, this threat has extended to Microsoft and Red Hat, and the affected Microsoft’s Window systems include versions 7, 8.1 and 10, as well as all the Windows Server versions. Windows 10 — 64 bit — in particular, features an option for Windows Subsystem for Linux that is vulnerable. Turning off this option doesn’t prevent the attacker from exploiting the vulnerability, however.

Vulnerable Red Hat products include Virtualization 4, Enterprise MRG, Enterprise Linux Atomic Host and Enterprise Linux versions 6, 7, Real Time 7, 7 for ARM64 and 7 for Power.

Source: https://searchsecurity.techtarget.com/answer/FragmentSmack-How-is-this-denial-of-service-exploited

How to secure your online business from cyber threats?

Ecommerce revenue worldwide amounts to more than 1.7 trillion US dollars, in the year 2018 alone. And the growth is expected to increase furthermore.

However, with growth comes new challenges. One such problem is cybersecurity. In 2017, there were more than 88 million attacks on eCommerce businesses. And a significant portion includes small businesses.

Moreover, online businesses take a lot of days to recover from the attacks. Some businesses completely shut down due to the aftermath of the security breaches.

So, if you are a small business, it is essential to ensure the safety and security of your eCommerce site. Else, the risks pose a potential threat to your online business.

Here we discuss some basics to ensure proper security to your eCommerce site.

Add an SSL certificate

An SSL Certificate ensures that the browser displays a green padlock or in a way shows to the site visitors that they are safe; and that their data is protected with encryption during the transmission.

To enable or enforce an SSL certificate on your site, you should enable HTTPS—secured version of HyperText Transfer Protocol (HTTP)—across your website.

In general, HTTP is the protocol web browsers use to display web pages.

So, HTTPS and SSL certificates work hand in hand. Moreover, one is useless without the other.

However, you have to buy an SSL certificate that suits your needs. Buying a wrong SSL certificate would do no good for you.

Several types of SSL certificates are available based on the functionality, validation type, and features.

Some common SSL certificates based on the type of verification required are:

  1. Domain Validation SSL Certificate: This SSL certificate is issued after validating the ownership of the domain name.
  2. Organization Validation SSL Certificate: This SSL certificate additionally requires you to verify your business organization. The added benefit is it gives the site visitors or users some more confidence. Moreover, small online businesses should ideally opt for this type of SSL certificate.
  3. Extended Validation SSL Certificate: Well, this type of SSL certificate requires you to undergo more rigorous checks. But when someone visits your website, the address bar in the browser displays your brand name. It indicates users that you’re thoroughly vetted and highly trustworthy.

Here are some SSL certificate types based on the features and functionality.

  1. Single Domain SSL Certificate: This SSL certificate can be used with one and only one domain name.
  2. Wildcard SSL Certificate: This SSL certificate covers the primary and all the associated subdomains.
    Every subdomain along with the primary domain example.com will be covered under a single wildcard SSL certificate.
  3. Multi-Domain SSL Certificate: One single SSL certificate can cover multiple primary domains. The maximum number of domains covered depends on the SSL certificate vendor your purchase the certificate from. Typically, a Multi-Domain SSL Certificate can support up to 200 domain names.

Nowadays, making your business site secure with SSL certificate is a must. Otherwise, Google will punish you. Yes, Google ranks sites with HTTPS better than sites using no security.

However, if you are processing online payments on your site, then SSL security is essential. Otherwise, bad actors will misuse your customer information such as credit card details, eventually leading to identity theft and fraudulent activities.

Use a firewall

In general, a firewall monitors incoming and outgoing traffic on your servers, and it helps you to block certain types of traffic—which may pose a threat—from interacting or compromising your website servers.

Firewalls are available in both virtual and physical variants. And it depends on the type of environment you have in order to go with a specific firewall type.

Many eCommerce sites use something called a Web Application Firewall (WAF).

On top of a typical network firewall, a WAF gives more security to a business site. And it can safeguard your website from various types of known security attacks.

So, putting up a basic firewall is essential. Moreover, using a Web Application Firewall (WAF) is really up to the complexity of the website or application you have put up.

Protect your site from DDoS attacks

A type of attack used to bring your site down by sending huge amounts of traffic is nothing but denial-of-service-attack. In this attack, your site will be bombarded with spam requests in a volume that your website can’t handle. And the site eventually goes down, putting a service disruption to the normal/legitimate users.

However, it is easy to identify a denial-of-service-request, because too many requests come from only one source. And by blocking that source using a Firewall, you can defend your business site.

However, hackers have become smart and highly intelligent. They usually compromise various servers or user computers across the globe. And using those compromised sources, hackers will send massive amounts of requests. This type of advanced denial-of-service attack is known as distributed-denial-of-service-attack. Or simply put a DDoS attack.

When your site is attacked using DDoS, a common Firewall is not enough; because a firewall can only defend you from bad or malicious requests. But in DDoS, all requests can be good by the definition of the Firewall, but they overwhelm your website servers.

Some advanced Web Application Firewalls (WAF) can help you mitigate the risks of DDoS attacks.

Also, Internet Service Providers (ISPs) can detect them and stop the attacks from hitting your website servers. So, contact your ISP and get help from them on how they can protect your site from DDoS attacks.

If you need a fast and straightforward way to secure your website from distributed-denial-of-service attacks, services like Cloud Secure from Webscale Networks is a great option.

In the end, it is better to have strategies in place to mitigate DDoS attacks. Otherwise, your business site may go down and can damage your reputation—which is quite crucial in the eCommerce world.

Get malware protection

A Malware is a computer program that can infect your website and can do malicious activities on your servers.

If your site is affected by Malware, there are a number of dangers your site can run into. Or, the user data stored on your servers might get compromised.

So, scanning your website regularly for malware detection is essential. Symantec Corporation provides malware scanning and removal tools. These tools can help your site stay safe from various kinds of malware.

Encrypt data

If you are storing any user or business related data, it is best to store the data in encrypted form, on your servers.

If the data is not encrypted, and when there is a data breach, a hacker can easily use the data—which may include confidential information like credit card details, social security number, etc. But when the data is encrypted, it is much hard to misuse as the hacker needs to gain access to the decryption key.

However, you can use a tokenization system. In which, the sensitive information is replaced with a non-sensitive data called token.

When tokenization implemented, it renders the stolen data useless. Because the hacker cannot access the Tokenization system, which is the only component that can give access to sensitive information. Anyhow, your tokenization system should be implemented and isolated properly.

Use strong passwords

Use strong passwords that are at least 15 character length for your sites’ admin logins. And when you are remotely accessing your servers, use SSH key-based logins wherever possible. SSH key-based logins are proven to be more secure than password-based logins.

Not only you, urge your site users and customers to use strong password combinations. Moreover, remind them to change their password frequently. Plus, notify them about any phishing scams happening on your online business name.

For example, bad actors might send emails to your customers giving lucrative offers. And when a user clicks on the email, he will be redirected to a site that looks like yours, but it is a phishing site. And when payment details are entered, the bad actor takes advantage and commits fraudulent activities with the stolen payment info.

So, it is important to notify your user base about phishing scams and make your customers knowledgeable about cybersecurity.

Avoid public Wi-Fi networks

When you are working on your business site or logging into your servers, avoid public wifi networks. Often, these networks are poorly maintained on the security front. And they can become potential holes for password leaks.

However, public wifi networks can be speedy. So, when you cannot avoid using a public wifi network, use VPN services like ProtonVPN, CyberGhost VPN, TunnelBear VPN, etc, to mitigate the potential risks.

Keep your software update

To run an online business, you have to use various software components, from server OS to application middleware and frameworks.

Ensure that all these components are kept up to date timely and apply the patches as soon as they are available. Often these patches include performance improvements and security updates.

Some business owners might feel that this is a tedious process. But remember, one successful cyber attack has the potential to push you out of business for several days, if not entirely.

Conclusion

In this 21st century, web technology is growing and changing rapidly. So do the hackers from the IT underworld.

The steps mentioned above are necessary. But we cannot guarantee that they are sufficient. Moreover, each business case is different. You always have to keep yourself up to date. And it would help if you took care of your online business security from time to time. Failing which can make your business site a victim of cyber attacks.

Source: https://londonlovesbusiness.com/how-to-secure-your-online-business-from-cyber-threats/

Over third of large Dutch firms hit by cyberattack in 2016 – CBS

Large companies are hit by cyberattacks at an above average rate, according to the Cybersecurity Monitor of Dutch statistics bureau CBS for 2018. Among companies of 250+ employees, 39 percent were hit at least once by a cyberattack in 2016, such as a hack or DDoS attack. By contrast, around 9 percent of small companies (2-10 employees) were confronted with such an ICT incident.

Of the larger companies, 23 percent suffered from failure of business processes due to the outside cyberattacks. This compares to 6 percent for the smaller companies. Of all ICT incidents, failures were most common, for all sizes, though again, the larger companies were more affected (55%) than the smaller ones (21%). The incidents led to costs for both groups of companies.

Chance of incident bigger at large company

CBS noted that ICT incidents can arise from both from an outside attack and from an internal cause, such as incorrectly installed software or hardware or from the unintentional disclosure of data by an employee. The fact that larger companies suffer more from ICT incidents can be related to the fact that more people work with computers; this increases the chance of incidents. In addition, larger companies often have a more complex ICT infrastructure, which can cause more problems.

The number of ICT incidents also varies per industry. For example, small businesses in the ICT sector (12%) and industry (10%) often suffer from ICT incidents due to external attacks. Small companies in the hospitality sector (6%) and health and welfare care (5%) were less often confronted with cyberattacks.

Internal cause more common at smaller companies

Compared to larger companies, ICT incidents at small companies more often have an internal cause: 2 out 3, compared to 2 out of 5 for larger companies. ICT incidents at small companies in health and welfare care most often had an internal cause (84%). In the ICT sector, this share was 60 percent.

About 7 percent of companies with an ICT incident report them to one or more authorities, including police, the Dutch Data Protection Authority AP, a security team or their bank. The largest companies report ICT incidents much more often (41%) than the smallest companies (6%). Large companies report these ICT incidents most frequently to the AP, complying with law. After that, most reports are made to the police. The smallest companies report incidents most often to their bank.

Smaller: less safe

Small businesses are less often confronted with ICT incidents and, in comparison with large companies, take fewer security measures. Around 60 percent of small companies take three or more measures. This goes to 98 percent for larger companies.

Source: https://www.telecompaper.com/news/over-third-39-of-large-dutch-firms-hit-by-cyberattack-in-2016-cbs–1265851

Central planning bureau finds Dutch cybersecurity at high level

Dutch businesses and the public sector are well protected against cybersecurity threats compared to other countries, according to a report from the Central Planning Bureau on the risks for cybersecurity. Dutch websites employ encryption techniques relatively often, and the ISPs take measures to limit the impact of DDoS attacks, the report said.

Small and medium-sized businesses are less active than large companies in protecting their activities, employing techniques such as data encryption less often, the CPB found. This creates risks for small business and consumers that could be avoided.

The report also found that the Dutch are more often victims of cybercrime than other forms of crime. This implies a high cost for society to ensure cybersecurity. In 2016, already 11 percent of businesses incurred costs due to a hacking attempt.

The threat of DDoS attacks will only increase in the coming years due to the growing number of IoT devices. This was already evident in the attacks against Dutch bank websites earlier this year. A further risk is that over half the most important banks in the world use the same DDoS protection service.

According to the paper Financieele Dagblad, this supplier is Akamai. The company provides DDoS protection for 16 of the 30 largest banks worldwide. The Dutch banks ABN Amro, ING and Rabobank said they were not dependent on a single provider.

The CPB report also found that the often reported shortage of qualified ICT staff is less of a threat than thought. The number of ICT students has risen 50 percent in four years and around 100,000 ICT jobs have been added in the country since 2008. Already 5 percent of all jobs are in ICT. This puts the Netherlands at the top of the pack in Europe, alongside the Nordic countries.

Source: https://www.telecompaper.com/news/central-planning-bureau-finds-dutch-cybersecurity-at-high-level–1264818

DDoS Attack on German Energy Company RWE

Protesters in Germany have been camping out at the Hambach Forest, where the German energy company RWE has plans to mine for coal. Meanwhile, it’s been reported that RWE’s website was under attack as police efforts to clear the protesters from the woods were underway.

According to Deutsche Welle, unknown attackers launched a large-scale distributed denial-of-service (DDoS), which took down RWE’s website for virtually all of Tuesday. No other systems were attacked, but efforts to clear away the protesters have been ongoing for the better part of the month, and activists have reportedly made claims that they will be getting more aggressive in their tactics.

Activists have occupied the forest in hopes of preventing RWE from moving forward with plans to expand its coal mining operations, which would effectively clear the forest. In addition to camping out in the forest, the protesters have reportedly taken to YouTube to spread their message.

Reports claim that a clip was posted last week by Anonymous Deutsch that warned, “If you don’t immediately stop the clearing of the Hambach Forest, we will attack your servers and bring down your web pages, causing you economic damage that you will never recover from,” DW reported.

“Together, we will bring RWE to its knees. This is our first and last warning,” the voice from the video reportedly added.

DDoS attacks are intended to cripple websites, and the attack on RWE allowed the activists to make good on their threat, at least for one day.

““This is yet another example that illustrates the DDoS threat to [softer targets in] CNI [critical network infrastructure].  RWE is an operator of an essential service (energy) in Germany. The lights didn’t go out but their public-facing website was offline as a result of this attack,” said Andrew Llyod, president, Corero Network Security.

In a recent DDoS report, Corero researchers found that “after facing one attack, one in five organizations will be targeted again within 24 hours.”

Source: https://www.infosecurity-magazine.com/news/ddos-attack-on-german-energy/

3 Drivers Behind the Increasing Frequency of DDoS Attacks

What’s causing the uptick? Motivation, opportunity, and new capabilities.

According to IDC Research’s recent US DDoS Prevention Survey, more than 50% of IT security decision makers said that their organization had been the victim of a distributed denial-of-service (DDoS) attack as many as 10 times in the past year. For those who experienced an attack, more than 40% lasted longer than 10 hours. This statistic correlates with our ATLAS findings, which show there were 7.5 million DDoS attacks in 2017 — a rate, says Cisco, that is increasing at roughly the same rate as Internet traffic.

What’s behind the uptick? It boils down to three factors: motivation of the attackers; the opportunity presented by inexpensive, easy-to-use attack services; and the new capabilities that Internet of Things (IoT) botnets have.

Political and Criminal Motivations
In an increasingly politically and economically volatile landscape, DDoS attacks have become the new geopolitical tool for nation-states and political activists. Attacks on political websites and critical national infrastructure services are becoming more frequent, largely because of the desire and capabilities of attackers to affect real-world events, such as election processes, while staying undiscovered.

In June, a DDoS attack was launched against the website opposing a Mexican presidential candidate during a debate. This attack demonstrated how a nation-state could affect events far beyond the boundaries of the digital realm. It threatened the stability of the election process by knocking a candidate’s website offline while the debate was ongoing. Coincidence? Perhaps. Or maybe an example of the phenomenon security experts call “cyber reflection,” when an incident in the digital realm is mirrored in the physical world.

DDoS attacks carried out by criminal organizations for financial gain also demonstrate cyber reflection, particularly for global financial institutions and other supra-national entities whose power makes them prime targets, whether for state actors, disaffected activists, or cybercriminals. While extortion on the threat of DDoS continues to be a major threat to enterprises across all vertical sectors, cybercriminals also use DDoS as a smokescreen to draw attention away from other nefarious acts, such as data exfiltration and illegal transfers of money.

Attacks Made Easy
This past April, Webstresser.org — one of the largest DDoS-as-a-service (DaaS) providers in existence, which allowed criminals to buy the ability to launch attacks on businesses and responsible for millions of DDoS attacks around the globe — was taken down in a major international investigation. The site was used by a British suspect to attack a number of large retail banks last year, causing hundreds of thousands of pounds of damage. Six suspected members of the gang behind the site were arrested, with computers seized in the UK, Holland, and elsewhere. Unfortunately, as soon as Webstresser was shut down, various other similar services immediately popped up to take its place.

DaaS services like Webstresser run rampant in the underground marketplace, and their services are often available at extremely low prices. This allows anyone with access to digital currency or other online payment processing service to launch a DDoS attack at a target of their choosing. The low cost and availability of these services provide a means of carrying out attacks both in the heat of the moment and after careful planning.

The rage-fueled, irrational DDoS-based responses of gamers against other gamers is a good example of a spur-of-the-moment, emotional attack enabled by the availability of DaaS. In other cases, the DaaS platforms may be used in hacktivist operations to send a message or take down a website in opposition to someone’s viewpoint. The ease of accessibility to DaaS services enables virtually anyone to launch a cyberattack with relative anonymity.

IoT Botnets
IoT devices are quickly brought to market at the lowest cost possible, and securing them is often an afterthought for manufacturers. The result? Most consumer IoT devices are shipped with the most basic types of vulnerabilities, including hard code/default credentials, and susceptibility to buffer overflows and command injection. Moreover, when patches are released to address these issues, they are rarely applied. Typically, a consumer plugs in an IoT device and never contemplates the security aspect, or perhaps does not understand the necessity of applying regular security updates and patches. With nearly 27 billion connected devices in 2017, expected to rise to 125 billion by 2030 according to analysis from IHS Markit, they make extremely attractive targest for malware authors.

In the latter half of 2016, a high-visibility DDoS attack against a DNS host/provider was observed, which affected a number of major online properties. The malware responsible for this attack, and many others, was Mirai. Once the source code for Mirai was published on September 30, 2016, it sparked the creation of a slew of other IoT-based botnets, which have continued to evolve significantly. Combined with the proliferation of IoT devices, and their inherent lack of security, we have witnessed a dramatic growth in both the number and size of botnets. These new botnets provide the opportunity for attackers and DaaS services to create new, more powerful, and more sophisticated attacks.

Conclusion
Today’s DDoS attacks are increasingly multivector and multilayered, employing a combination of large-scale volumetric assaults and stealth infiltration targeting the application layer. This is just the latest trend in an ever-changing landscape where attackers adapt their solutions and make use of new tools and capabilities in an attempt to evade and overcome existing defenses. Businesses need to maintain a constant vigilance on the techniques used to target them and continually evolve their defenses to industry best practices.

Source: https://www.darkreading.com/attacks-breaches/3-drivers-behind-the-increasing-frequency-of-ddos-attacks/a/d-id/1332824

Hackers behind Mirai botnet could be sentenced to working for the FBI

This comes after more than 18 months of already helping the FBI stop cyberattacks

Three young hackers went from believing they were “untouchable” to helping the FBI stop future cyberattacks.

The trio of hackers behind the Mirai botnet — one of the most powerful tools used for cyberattacks — has been working with the FBI for more than a year, according to court documents filed last week.

Now the government is recommending they be sentenced to continue assisting the FBI, instead of a maximum five years in prison and a $250,000 fine.

“By working with the FBI, the defendants assisted in thwarting potentially devastating cyberattacks and developed concrete strategies for mitigating new attack methods,” US attorneys said in a motion filed Sept. 11. “The information provided by the defendants has been used by members of the cybersecurity community to safeguard US systems and the Internet as a whole.”
Originally, a probation officer on the case recommended that all three defendants be sentenced to five years’ probation and 200 hours of community service.

Because of the hackers’ help, prosecutors have asked that the community service requirement be bumped up to 2,500 hours, which would include “continued work with the FBI on cybercrime and cybersecurity matters.”

The three defendants are set to be sentenced by a federal judge in Alaska. The sentencing plea Tuesday was earlier reported by Wired.

Hacker rehab

Governments have taken a new approach with young, first-offender hackers, in the hopes of rehabilitating them and recruiting them to help defend against future attacks. The UK offers an alternative called the “cybercrime intervention workshop,” essentially a boot camp for young hackers who have technical talent but poor judgment.

The three defendants — Josiah White, Paras Jha and Dalton Norman — were between the ages of 18 and 20 when they created Mirai, originally to take down rival Minecraft servers with distributed denial-of-service attacks.

DDoS attacks send massive amounts of traffic to websites that can’t handle the load, with the intention of shutting them down. Mirai took over hundreds of thousands of computers and connected devices like security cameras and DVRs, and directed them for cyberattacks and traffic scams.

In one conversation, Jha told White that he was “an untouchable hacker god” while talking about Mirai, according to court documents.

The botnet was capable of carrying out some of the largest DDoS attacks ever recorded, including one in 2016 that caused web outages across the internet. The three defendants weren’t behind the massive outage, but instead were selling access to Mirai and making thousands of dollars, according to court documents.

Helping the FBI

The three hackers pleaded guilty in December, but had been helping the government with cybersecurity for 18 months, even before they were charged. Prosecutors estimated they’ve worked more than 1,000 hours with the FBI — about 25 weeks in a typical workplace.

That includes working with FBI agents in Anchorage, Alaska, to find botnets and free hacker-controlled computers, and building tools for the FBI like a cryptocurrency analysis program.

In March, the three hackers helped stop the Memcached DDoS attack, a tool that was capable of blasting servers with over a terabyte of traffic to shut them down.

“The impact on the stability and resiliency of the broader Internet could have been profound,” US attorneys said in a court document. “Due to the rapid work of the defendants, the size and frequency of Memcache DDoS attacks were quickly reduced such that within a matter of weeks, attacks utilizing Memcache were functionally useless.”

According to US officials, the three hackers also last year helped significantly reduce the number of DDoS attacks during Christmas, when activity usually spikes. Along with helping the FBI, the three defendants have also worked with cybersecurity companies to identify nation-state hackers and assisted on international investigations.

Jha now works for a cybersecurity company in California while also attending school. Dalton has been continuing his work with FBI agents while attending school at the University of New Orleans, and White is working at his family’s business.

Prosecutors heavily factored their “immaturity” and “technological sophistication” as part of the decision.

“All three have significant employment and educational prospects should they choose to take advantage of them rather than continuing to engage in criminal activity,” the court documents said.

Source: https://www.cnet.com/news/hackers-behind-mirai-botnet-could-be-sentenced-to-working-for-the-fbi/

The evolution of DDoS attacks – and defences

Aatish Pattni, regional director, UK & Ireland, Link11, explores in Information Age how DDoS attacks have grown in size and sophistication over the last two decades.

What is the biggest cyber-threat to your company? In April 2018, the UK’s National Crime Agency answered that question by naming DDoS attacks as the joint leading threat facing businesses, alongside ransomware. The NCA noted the sharp increase in DDoS attacks on a range of organisations during 2017 and into 2018, and advised organisations to take immediate steps to protect themselves against the potential attacks.

It’s no surprise that DDoS is seen as such a significant business risk. Every industry sector is now reliant on web connectivity and online services. No organisation can afford to have its systems offline or inaccessible for more than a few minutes: business partners and consumers expect seamless, 24/7 access to services, and being forced offline costs a company dearly. A Ponemon Institute study found that each DDoS incident costs $981,000 on average, including factors such as lost sales and productivity, the effect on customers and suppliers, the cost of restoring IT systems, and brand damage.

So how have DDoS attacks evolved from their early iterations as stunts used by attention-seeking teens, to one of the biggest threats to business? What techniques are attackers now using, and how can organisations defend themselves?

Early days of DDoS

The first major DDoS attack to gain international attention was early in 2000, launched by a 15-year-old from Canada who called himself Mafiaboy. His campaign effectively broke the internet, restricting access to the web’s most popular sites for a full week, including Yahoo!, Fifa.com, Amazon.com, eBay, CNN, Dell, and more.

DDoS continued to be primarily a tool for pranks and small-scale digital vandalism until 2007, when a range of Estonian banking, news, and national government websites were attacked. The attack sparked nationwide riots and is widely regarded as one of the world’s first nation-state acts of cyberwar.

The technique is also successful as a diversion tactic, to draw the attention of IT and security teams while a second attack is launched: another security incident accompanies up to 75% of DDoS attacks.

Denial of service has also been used as a method of protest by activist groups including Anonymous and others, to conduct targeted take-downs of websites and online services. Anonymous has even made its attacks tools freely available for anyone to use. Recent years have also seen the rise of DDoS-on-demand services such as Webstresser.org. Before being shut down by international police, Webstresser offered attack services for as little as £11, with no user expertise required – yet the attacks were powerful enough to disrupt operations at seven of the UK’s biggest banks.

Amplified and multi-vector attacks

In October 2016, a new method for distributing DoS attacks emerged – using a network of Internet of Things (IoT) devices to amplify attacks. The first of these, the Mirai botnet infected thousands of insecure IoT devices to power the largest DDoS attack witnessed at the time, with volumes over a Terabyte. By attacking Internet infrastructure company Dyn, Mirai brought down Reddit, Etsy, Spotify, CNN and the New York Times.

This was just a signpost showing how big attacks could become. In late February 2018, developer platform Github was hit with a 1.35 Tbps attack, and days later a new record was set with an attack volume exceeding 1.7 Tbps. These massive attacks were powered by artificial intelligence (AI) and self-learning algorithms which amplified their scale, giving them the ability to disrupt the operations of any organisation, of any size.

Attacks are not only getting bigger but are increasingly multi-vector. In Q4 2017, Link11 researchers noted that attackers are increasingly combining multiple DDoS attack techniques. Over 45% of attacks used 2 or more different techniques, and for the first time, researchers saw attacks which feature up to 12 vectors. These sophisticated attacks are difficult to defend against, and even low-volume attacks can cause problems, as happened in early 2018 when online services from several Dutch banks, financial and government services were brought to a standstill.

Staying ahead of next-generation AI-based attacks

As DDoS attacks now have such massive scale and complexity, traditional DDoS defences can no longer withstand them. Firewalls, special hardware appliances and intrusion detection systems are the main pillars of protection against DDoS, but these all have major limitations. Current attack volume levels can easily overload even high-capacity firewalls or appliances, consuming so many resources that that reliable operation is no longer possible.

Extortion by DDoS

The next iteration of attackers set out to use DDoS as an extortion tool, threatening organisations with an overwhelming attack unless they meet the attacker’s demand for cryptocurrency. Notable extortionists included the original Armada Collective, which targeted banks, web hosting providers, data centre operators as well as e-commerce and online marketing agencies in Greece and Central Europe.

Between January and March 2018, Link11’s Security Operation Centre recorded 14,736 DDoS attacks, an average of 160 attacks per day, with multiple attacks exceeding 100 Gbps. Malicious traffic at these high volumes can simply flood a company’s internet bandwidth, rendering on-premise network security solutions useless.

What’s needed is to deploy a cloud-native solution that can use AI to filter, analyse, and block web traffic if necessary before it even reaches a company’s IT systems. This can be done by routing the company’s Internet traffic via an external, cloud-based protection service. With this approach, incoming traffic is subject to granular analysis, with the various traffic types being digitally ‘fingerprinted’.

Each fingerprint consists of hundreds of properties, including browser data, user behaviour, and its origin. The solution builds up an index of both normal and abnormal, or malicious traffic fingerprints. When known attack patterns are detected in a traffic flow, the attack ‘client’ is blocked immediately and automatically in the cloud, before it even reaches customers’ networks – so that only clean; legitimate traffic reaches the organisation. However, regular traffic is still allowed, enabling a business to continue unaffected, without users being aware of the filtering process.

The solution’s self-learning AI algorithms also help to identify and block attacks for which there is no current fingerprint within a matter of seconds, to minimise the impact on the organisation’s website or web services. This means each new attack helps the system improve its detection capabilities, for the benefit of all users. Furthermore, this automated approach to blocking attacks frees up IT and security teams, enabling them to focus on more strategic work without being distracted by DDoS attempts.

In conclusion, DDoS attacks will continue to evolve and grow, simply because with DDoS-for-hire services and increasingly sophisticated methods, they are relatively easy and cheap to do – and they continue to be effective in targeting organisations. But by understanding how attacks are evolving and implementing the protective measures described here, organisations will be better placed to deny DDoS attackers.

Source: https://www.information-age.com/evolution-of-ddos-123473947/